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A KINETIC NETWOR 1~ MODEL FOR NONLINEAR VISCOELASTIC FLOW

P~~PERTIES OF ENTANGLED MONODISPERSE POLYMERS

High polymers in concentrated solutions or in the melt

exhibit shear-rate-dependent viscosity and normal stress dif-

ferences. In transient flows upon inception of steady shear, the

stress growth function of the polymer overshoots through a maxi-

mum and then decays to the steady-state value asymptotically

for large shear rates. However, for small shear rates, it only

increases monotonically to its limiting steady-state value. Upon

cessation of steady shear, the stress relaxation fun ction de-

creases monotonically to zero, the rate of which is higher for

larger shear rates. These rheological properties have been in-

terpreted by the shear-induced changes in the steady-state entan-

glement density in. the polymer (1).

Lodge explained the nonlinear viscoelastic flow properties

by a “rubberlike liquid” model, which however still predicted a

shear—rate-independent viscosity and primary normal stress co-

efficient. Many modified theories (3-6) have since been pro-

posed to refine this model. Most of them employ empirical ex-

pressions for the memory functions to give the rate-dependent

properties.
’
~~In this work, we shall propose a kinetic network model

which appears to predict the observed nonlinear viscoelastic flow

properties of entangled polymer systems .

The basic molecular mechanism of this model attributes the

rate-dependence of viscosity and normal stress difference to the

decrease in entanglement density with increasing shear rate. In

a flow field, entanglements are being formed and disengaged
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~~~constantly. The entanglement loss process is caused primarily

by the imposed shear and is assumed to be proportional to the

shear rate to a power aj

= k~~% (1)

where is the entanglement los~Jrate~ k~ is the rate constant,

~ is the shear rate, n is thej~ arrent number of entanglements along

a representative chain, and~~(<l) accounts for the elastic nature

of the polymer. The entanglement creation process, driven by

thermal diffusion, is assumed to be independent of shear rate.~~~

In other words,

= (k~ /A~~) (n0- n) (2)

where is the entanglement creation rate, k
~ 

is the rate

constant, A is a characteristic time determined by the rate of 4

diffusion, and is thus a function of molecular weight and

temperature, a is the elasticity parameter, and n0 is the

saturation number of entanglements along a representative chain.

(n0- n) is the number of vacant sites where entanglements have

been lost and can be likely regenerated.

At steady state, the creation rate equals the loss rate

= 1~i~~) and the entanglement density stays constant. Equating

Eqs. 1 and 2, we have

PEn /n = 
1 (3)

° 1 + (k b/k ) ( A ~~)~~A. C

Eq. 3 describes the probability for entanglements to exist at
a D

different shear rates. The viscous drag from the entanglements D

is believed to be the major source of contribution to polymer •• — ——--

viscosity (1). Therefore, to a good approximation, the reduced
________ 
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viscosity as a function of shear rate is also given by

- ‘ (4 )

where fl0 is the zero-shear-rate viscosity of the polymeric fluid.

The normal stresses come from the elastic energy stored in

the system, and are primarily sustained by pairs of entanglements,

because the elastic deformation energy can be trapped in between

these slowly moving points. The primary normal stress difference

should thus be proportional to the square of the probability for

individual entanglements to remain under the flow situation, which

in turn corresponds to the probability for pairs of entanglements

to exist simultaneously. In other words,

111 (~) 
- T22

(y) = 

~ 
(1+ k

~
,
~~ 

(X~)
a) (5)

where 8 is a proportionality constant which determines the

value of primary normal stress difference. The reduced

viscosity and primary normal stress difference as functions of

shear rate calculated by Eqs. 4 and 5 for a equals to 0.85 is

given in Pig. 1. The curves show qualitatively the expected

trend.

Under transient flow conditions, such as inception and

cessation of steady shear, the entanglement probability P becomes

a function of time which also has some parametric dependence on

shear rate. It can still be calculated by the following dif-

ferential equation governing the relationship between the change

of entanglements to the two competing rate processes, i.e.,
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where xi is the rate of change of entanglements. Inserting the

expressions for entanglement creation and loss rates, Eq. 6 can

be integrated to give for start-up experiments.
• a

• • • .kLy tp (t;y0) = p( y 0) + (1 — p,,,(y0))exp(- 
— 

( 7 )

where P~(~0) is the steady-state entanglement probability; and

for stress relaxation experiments.

• •P( t ;y ) = 1 — (1 — P,~(y0))exp(— —.
~~~ 

t) (8)

where P ( ~ ) is again the steady—state entanglement probability ,

in this case, before the flow is stopped.

Polymer network possesses certain elastic characteristics.

When it is suddenly deformed upon the inception of steady shear,

the shear stress born by an average entanglement first increases

with time rapidly and then gradually levels of f towards the

steady-state value. A Maxwellian model is assumed to

represent this behavior, i.e.,

a(t r ~
•
0 = l — e x p ~— t/r) (9)a00 C

where a(t;y0) and a (~~) are the current average stress and

the final steady-state stress carried by individual entanglements

respectively, and i is the system tints constant. The macro-

scopic stress exerted by the fluid is given by the product of

the average microetress supported by a remaining entanglement

and the number of such stress-bearing entanglements. The
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normalized shear stress growth functions thus calculated are pre-

sented in Fig. 2. The curves qualitatively reproduce the

expected behavior. Quantitative comparison of this theory with

experimental data is now being investigated, the results of

which will be reported in forthcoming publications.
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CAPTIONS

1. Theoretical curves of log reduced viscosity and primary

normal stress difference vs log reduced shear rate, where A

is the characteristic time, and a is the elasticity parameter.

(The ratio kL/kc is taken as 1, and a = 0.85)

2. Normalized stress growth function for three different

shear rates calculated by the theory. The parameters used

are a = 0.85, k& = 0.3, kL,k~Aa = 1, ~ = 0.5. 
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